Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Poly[bis[aquaneodymium(III)]- μ_2 oxalato-di- μ_4 -succinato]

Chun-Xiang Wang, Zhi-Feng Li* and Ping Wang

School of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China Correspondence e-mail: jxlzfeng@yahoo.com.cn

Received 9 September 2007 Accepted 14 September 2007 Online 13 October 2007

In the title compound, $[Nd_2(C_4H_4O_4)_2(C_2O_4)(H_2O)_2]_n$, the flexible succinate anion assumes the *gauche* conformation and bridges the nine-coordinate Nd atoms to generate two-dimensional layers parallel to (010). The coordination polymer layers are linked into a three-dimensional framework by the rigid oxalate ligands. The oxalate ions are located on a center of inversion.

Comment

Great effort has been devoted to the design and synthesis of functional materials, an area of intense activity and tremendous potential significance (Bradshaw *et al.*, 2005; Kitagawa *et al.*, 2004; Rao *et al.*, 2004). Weak intermolecular forces, such as hydrogen bonding, π - π stacking, dipole–dipole attractions and van der Waals interactions, have been studied in depth and can be used in the design of molecular solids with specific supramolecular structures and functions (Fujita *et al.*, 2005; Noveron *et al.*, 2002; Bourne *et al.*, 2001). The self-assemblies of supramolecular complexes can be achieved by controlling the noncovalent interactions among the ligands, which are, in most cases, organic groups (Hunks *et al.*, 2002; Braga *et al.*, 2000)

Utilization of rigid aromatic dicarboxylate ligands has become an interesting strategy for constructing neutral nanoporous coordination polymers (Serre et al., 2002; Li et al., 1999; Chui et al., 1999). Unlike the rigid dicarboxylate spacer ligands, saturated aliphatic dicarboxylate ligands exhibit conformational and coordination versatility due to their single-bonded carbon chains, which are viewed as important flexible spacer ligands. Under mild ambient and hydrothermal conditions, self-assembly of metal cations with α, ω -dicarboxylate anions such as succinate afforded a variety of supramolecular motifs, where the discrete metal-oxygen polyhedra could be interconnected by organic linkers into polymeric layers and three-dimensional frameworks. Unfortunately, such three-dimensional frameworks exhibit normally little porosity (Zhang et al., 2006; Guillou et al., 2003; Forster & Cheetham, 2002). To overcome this problem, our recent

research has been intensively focused on simultaneous utilization of rigid dicarboxylate and flexible α,ω -dicarboxylate ligands to construct coordination polymers. We report here a novel lanthanide coordination polymer, $[Nd_2(C_4H_4O_4)_2-(C_2O_4)(H_2O)_2]$, (I), containing oxalate ligands, one of the simplest rigid dicarboxylate ligands, and flexible succinate ligands.

In (I), the Nd atoms are bridged by flexible succinate ligands to generate two-dimensional layers, which are pillared by rigid oxalate ligands into higher-dimensional frameworks. As shown in Fig. 1, the asymmetric unit consists of one Nd³⁺ cation, one succinate anion, one-half of an oxalate anion and one aqua ligand. The Nd atoms are each coordinated by nine O atoms of five succinate anions, one oxalate anion and one aqua ligand to complete a distorted tricapped trigonal-prismatic geometry. The succinate anions assume a gauche conformation, in which both carboxylate groups function similarly: each carboxylate group chelates one Nd atom, with one O atom (O1 and O4) additionally bonded to another Nd atom. The Nd1ⁱⁱⁱ–O4 bond distance is 2.925 (5) Å (symmetry code as in Table 1); however, the other Nd1-O bond distances range from 2.372 (5) to 2.580 (5) Å, which means that only very weak coordination interactions exist between atoms O4 and Nd1ⁱⁱⁱ. Through the terminal carboxylate bridging interactions, the polyhedra are edged-shared to generate metal-oxygen chains extending infinitely along the [001] direction, in which the adjacent Nd ··· Nd distances are 4.447 (2) and 4.190 (1) Å. Along the [100] direction, the chains are linked by the gauche succinate anions into layers parallel

Figure 1

The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x + 1, y, z + 1; (ii) -x + 1, -y, -z; (iii) -x + 2, -y, -z; (iv) -x + 2, -x + 2, -y + 1, -z + 1; (v) x - 1, y, z - 1.]

metal-organic compounds

to (010) (Fig. 2). Both lengths and angles within the succinate anions exhibit normal values (Seguatni *et al.*, 2004). The oxalate ions are located on a center of inversion and act as double bidentate (tetradentate) ligands in a linear chain that connects two Nd atoms in two different layers to form a threedimensional framework (Fig. 3). The aqua ligands donate H atoms to carboxylate atoms O2 and O5 to form hydrogen bonds (Table 2), which make a significant contribution to the stabilization of the crystal structure.

The two-dimensional layer structure formed by the connectivity between Nd atoms and succinate ligands in the title compound. H atoms attached to C atoms have been omitted for clarity.

Figure 3 The three-dimensional framework of the title compound.

A mixture of $NdCl_3 \cdot 6H_2O$ (1.00 mmol, 0.36 g), oxalic acid (0.50 mmol, 0.05 g), succinic acid (0.50 mmol, 0.06 g), NaOH (2.00 mmol, 0.08 g) and water (10.0 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h. The orange plate-like crystals which formed were filtered off and washed with water and acetone (yield 46% based on Nd).

Crystal data

 $\begin{bmatrix} Nd_2(C_4H_4O_4)_2(C_2O_4)(H_2O)_2 \end{bmatrix} & \gamma = 101.422 (1)^{\circ} \\ M_r = 322.34 & V = 385.23 (4) \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 6.8792 (4) \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 7.6203 (5) \text{ Å} & \mu = 6.74 \text{ mm}^{-1} \\ c = 8.0401 (5) \text{ Å} & T = 291 (2) \text{ K} \\ \alpha = 102.281 (2)^{\circ} & 0.23 \times 0.17 \times 0.06 \text{ mm} \\ \beta = 104.125 (1)^{\circ} \\ \end{bmatrix}$

2232 measured reflections

 $R_{\rm int} = 0.027$

119 parameters

 $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.85$ e Å⁻³

1572 independent reflections

1487 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.259, T_{max} = 0.662$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.113$ S = 1.101572 reflections

Table 1

Selected bond lengths (Å).

Nd1-O1'	2.443 (4)	$Nd1-O4^{m}$	2.925 (5)
Nd1-O1 ⁱⁱ	2.580 (5)	Nd1-O5	2.498 (4)
Nd1-O2 ⁱⁱ	2.523 (5)	$Nd1 - O6^{iv}$	2.449 (5)
Nd1-O3 ⁱⁱⁱ	2.469 (5)	Nd1-O7	2.460 (5)
Nd1-O4	2.372 (5)		

Symmetry codes: (i) x + 1, y, z + 1; (ii) -x + 1, -y, -z; (iii) -x + 2, -y, -z; (iv) -x + 2, -y + 1, -z + 1.

Table 2

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O7 - H7A \cdots O2^{vi} \\ O7 - H7B \cdots O5^{vi} \end{array}$	0.85	1.90	2.745 (6)	177
	0.85	2.00	2.777 (6)	151

Symmetry code: (vi) x + 1, y, z.

H atoms attached to C atoms were included at calculated positions and treated as riding atoms [C–H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. The water H atoms were found in a difference map, relocated in idealized positions (O–H = 0.85 Å) and refined as riding atoms [$U_{iso}(H) = 1.2U_{eq}(O)$].

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

This work was supported by Jiangxi Provincial Natural Science Foundation (grant No. 0620018), Jiangxi Provincial Educational Foundation (grant No. 2005-146) and Jiangxi University of Science and Technology Doctoral Foundation (grant No. 2003-1).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3164). Services for accessing these data are described at the back of the journal.

References

- Bourne, S. A., Mondal, A. & Zaworotko, M. J. (2001). Cryst. Eng. 4, 25–36. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J.
- (2005). Acc. Chem. Res. 38, 273–282. Braga, D., Maini, L., Grepioni, F., Cian, A. D., Félix, O., Fischer, J. & Hosseini,
- M. W. (2000). New J. Chem. 24, 547–554.
 Bruker (2004). APEX2 (Version 1.27), SAINT (Version 6.0) and SHELXTL
- (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & William, I. D. (1999). Science, 283, 1148–1150.
- Forster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457-459.

- Fujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 369–378.
- Guillou, N., Livage, C., van Beek, W., Noguès, M. & Férey, G. (2003). Angew. Chem. Int. Ed. 42, 644–647.
- Hunks, W. J., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 4590–4598.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.
- Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). *Nature (London)*, **402**, 276–279.
- Noveron, J. C., Lah, M. S., Del Sesto, R. E., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613–6625.
- Rao, C. N. R., Natarajan, S. & Vaidyanathan, R. (2004). *Angew. Chem. Int. Ed.* **43**, 1466–1496.
- Seguatni, A., Fakhfakh, M., Vaauley, M. J. & Jouini, N. (2004). J. Solid State Chem. 177, 3402–3410.
- Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D. & Férey, G. (2002). J. Am. Chem. Soc. 124, 13519–13526.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Zhang, G.-Q., Yang, G.-Q. & Ma, J. S. (2006). Cryst. Growth Des. 6, 933-939.